Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation.

نویسندگان

  • Zhi-You Zhou
  • Jie Ren
  • Xiongwu Kang
  • Yang Song
  • Shi-Gang Sun
  • Shaowei Chen
چکیده

Butylphenyl-functionalized Pt nanoparticles (Pt-BP) with an average core diameter of 2.93 ± 0.49 nm were synthesized by the co-reduction of butylphenyl diazonium salt and H(2)PtCl(4). Cyclic voltammetric studies of the Pt-BP nanoparticles showed a much less pronounced hysteresis between the oxidation currents of formic acid in the forward and reverse scans, as compared to that on naked Pt surfaces. Electrochemical in situ FTIR studies confirmed that no adsorbed CO, a poisoning intermediate, was generated on the Pt-BP nanoparticle surface. These results suggest that functionalization of the Pt nanoparticles by butylphenyl fragments effectively blocked the CO poisoning pathway, most probably through third-body effects, and hence led to an apparent improvement of the electrocatalytic activity in formic acid oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases....

متن کامل

Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid.

Monodisperse butylphenyl-functionalized palladium (Pd-BP, dia. 2.24 nm) nanoparticles were synthesized through co-reduction of butylphenyldiazonium and H(2)PdCl(4) by NaBH(4). Because of this unique surface functionalization and a high specific electrochemical surface area (122 m(2) g(-1)), the Pd-BP nanoparticles exhibited a mass activity ∼4.5 times that of commercial Pd black for HCOOH electr...

متن کامل

Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation†

IrxPt100 x alloy nanoparticles with varied compositions (x1⁄4 100, 75, 67, 50, 34, and 0) were synthesized by a thermolytic process at varied ratios of the IrCl3 and PtCl2 precursors. High-resolution transmission electron microscopic (HRTEM) measurements showed that the nanoparticles all exhibited well-defined crystalline structures with the average core diameters around 2 nm; and the elemental...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

In Situ NMR/IR/Raman and ab initio DFT Investigations of Pt-Based Mono- and Bi-metallic Nanoscale Electrocatalysts: from Sulfur-Poisoning to Polymer Promoters to Surface Activity Indexes

Over the current funding period (08/15/10 – present), we have achieved the following results: (1) identified the chemical state of adsorbed sulfur species on a Pt surface; (2) discovered that adsorbed sulfur species at low coverage can substantially enhance the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and CO monolayer oxidation reaction (CMOR); (3) discovered that ads...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2012